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Abstract

We examine Horowitz and Daganzo (1986) to provide a patch work such that researchers

can realize their paper as the first article to treat the reorder point as a decision variable

for inventory models with stochastic lead time. However, only seven papers had cited their

papers in their references. We may claim that (a) Their derivations contains tedious verifica-

tion, (b) They adopted a graphical method only search less than fifty percent of the possible

domain and (c) They did not show that within their shrunk sub-domain, the existence and

uniqueness of their approximated optimal solution that result in these few citations. Our

improvements include (i) A clear derivation after they reduced to one variable problem, (ii)

An analytical procedure to shrink the searching domain to 91%, and (iii) Within our shrunk

sub-domain, we prove the existence and uniqueness of our exact optimal solution.

Keywords: Reordered point, safety factor, inventory.

1. Introduction

In this paper, we study the inventory model with expedited shipment for shortage

where the reorder point and the order quantity are decision variables. This plan was

based on the paper of Horowitz and Daganzo [9] that was published on Production and

Inventory Management It is the first paper to consider the reordered point to be treated

as a decision variable. However, many researchers may consider that Moon and Choi [13]

and Hariga and Ben-Daya [8] are independently the first authors to use the reordered

point as a decision variable. This paper has been overlooked for two decades; only seven

papers have quoted Horowitz and Daganzo [9] in their references. They developed a new

inventory model to introduce several new variables and then used a graphical method to

find the optimal order quantity. It is not only the loss of the graphical method proposed

by Horowitz and Daganzo [9] but also the misfortune of the progress of inventory model.

With our improvement, their inventory model will obtain the attention that deserves.

Blumenfeld et al. [2] considered inventory models with trade-off between freight ex-

pediting and safety stock costs. Horowitz and Daganzo [9] extended their model to
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incorporate the uncertainty of shipment size and safety stock. To the best of our knowl-

edge, Horowitz and Daganzo [9] are the first authors to treat the reordered point as a

decision variable. Since Ouyang et al. [22] constructed a new mixture inventory system

to consider lost sales and backorders as measurements for shortage cost, Moon and Choi

[13] and Hariga and Ben-Daya [8] independently pointed out that the reordered point

should be considered as a new decision variable. Consequently, there is a trend to treat

the reordered point as a decision variable. For examples, Ouyang, et al. [16], Ouyang

and Chuang [18], Ouyang and Chuang [19], Ouyang and Chuang [20], Wu and Ouyang

[28], Wu and Ouyang [29], Wu, et al. [27], Ouyang and Chang [15], Ouyang, et al. [17],

Pan, et al. [23]. Here, we want to point out that Ouyang and Wu [21] and Chu, et al. [4],

for the distribution free model, they used the reordered point as a new variable and on

the other hand, for the normal distribution model, the reordered point is treated as a

constant. However, we want to indicate that the first paper to take the reordered point

as a decision parameter is Horowitz and Daganzo [9]. We believe, however, that their so-

lution procedure is too complicated to be absorbed by ordinary readers and their solution

is incomplete, because they do not show why their inventory model has the minimum

solution. This is why this pioneer work of Horowitz and Daganzo [9] seems to have been

ignored. Up to now only seven papers: Dar-El and Malmborg [6], Tyworth [24], Tyworth

and Ruiz-Torres [25], Daganzo [5], Blauwens et al. [1], Namit et al. [14], and Dullaert

et al. [7] have referred to Horowitz and Daganzo [9] in their references. Comparing to

two other papers, Moon and Choi [13] had been cited 131 times, and Hariga and Ben-

Daya [8] had been referred 130 times. Horowitz and Daganzo [9] may be overlooked by

researchers which is a loss for research society. There are several related papers: Chang

et al. [3], Hung et al. [10], Huang [11], Lin and Hopscotch [12] and Wang et al. [26] that

will provide valuable literature review for modern development with operations research.

In this paper, we will first simplify their derivation to obtain the first derivative of

the objective function. Next, we will prove that the inventory model indeed has the

minimum solution. Using the same numerical examples of Horowitz and Daganzo [9], we

will illustrate the saving by our improved solution procedure. We hope that this paper

will provide a basis for the understanding of Horowitz and Daganzos paper and give it

the attention that it deserves.

2. Notation and Assumptions

To be comparable with Horowitz and Daganzo [9], we use the same notation and

assumptions as theirs.
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S = safety stock,

Q = shipment size (number of parts), a decision variable,

s = reorder point,

L = lead time,

EL = forecasted demand during the lead time,

σL = standard derivation of the different between predicted and actual demand (the

measure of uncertainty) during the lead time,

k = safety factor: the multiple of σL that determines the safety stock, a decision

variable,

D = demand (parts/year),

F = fixed freight cost per regular shipment,

G = fixed freight cost per shipment expedited because of stockout,

P = part value,

R = inventory cost per dollar per year,

p(k) = probability of stockout during the lead time (assumed to be equal to Φ(−k),

the cumulative distribution function of a unit normal random variable),

C = total annual cost.

3. Review of Previous Results of Horowitz and Daganzo [9]

Horowitz and Daganzo [9] studied the inventory model with expedited shipment

when stockout occurred. We directly quote their total annual cost, C(k,Q),

C(k,Q) =
DF

Q
+ PRQ+ kPRσL +

DG

Q
p(k). (3.1)

From their assumption p(k) = Φ(−k) =

∫

−k

−∞

1
√
2π

e
−t

2

2 dt =

∫

−k

−∞

φ(t)dt, they knew that

d

dk
p(k) = φ(−k)

d

dk
(−k) = −φ(k) (3.2)

since φ(k) is the density function of the unit normal distribution with φ(k) =
1

√
2π

e
−k

2

2

to satisfy φ(−k) = φ(k). They found

∂

∂k
C(k,Q) = PRσL −

DG

Q
φ(k), (3.3)

and they solved for
∂

∂k
C(k,Q) = 0 which showed that

φ(k∗) =
1

√
2π

e
−1

2
(k∗)2 =

PRσLQ

DG
(3.4)
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to yield

k∗ =

√

2 ln
DG

√
2πPRσLQ

, (3.5)

if
DG

√
2πPRσLQ

≥ 1 guarantee k∗ ≥ 0.

Therefore, there is a natural possible domain for the optimal solution of the order quantity

to guarantee the non-negativity of k∗ with Equation (3.5), as

DG
√
2πPRσL

≥ Q > 0. (3.6)

For those Q satisfying
DG

√
2πPRσLQ

< 1, Horowitz and Daganzo [9] proved that C(k,Q)

is an increasing function of k such that the minimum value will occur when k = 0. This

implies that there is no safety stock. They believed that in most practical situations,

the optimal value of k is positive. Hence, in their paper, they implicitly assumed the

possible range for Q as
DG

√
2πPRσL

> Q > 0. (3.7)

Under the restriction in Equation (3.7), they plugged Equation (3.5) into Equation (3.1)

to express the total annual cost in one variable Q as

C(Q) =
DF

Q
+ PRQ+ k∗PRσL +

DG

Q
Φ(−k∗). (3.8)

where k∗ satisfies Equation (3.5). They created a complicated procedure to solve
d

dQ
C(Q)

= 0 and then they used a graphical method to show that
d

dQ
C(Q) = 0 has a unique

solution. They did not discuss why the inventory model has an optimal solution or

whether or not the optimal solution is unique. Moreover, the graphical method may be

not accurate, so researchers can only roughly estimate the optimal shipment size. We

can provide an analytical method to find the optimal solution.

4. Our Improvement

Our original goal is to prove
d

dQ
C(Q) = 0 having a unique solution under the

condition of Equation (3.6). However, we will face technical problems such that we will

shrink the searching domain from Equation (3.6) to a small (In Example 1, 91%) domain

then we can prove the existence and uniqueness of the optimal solution. To simplify the

expression for our development, based on Equation (3.5), we assume that

k∗(Q) =

√

2 ln
DG

√
2πPRσLQ

(4.1)
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to clearly indicate that k(Q) is a function of Q. We rewrite Equation (3.8) as

C(Q) =
DF

Q
+ PRQ+ PRσLk

∗(Q) +
DG

Q
Φ(−k∗(Q)). (4.2)

We know that
d

dQ
Φ(−k(Q)) = −φ(−k(Q))

dk(Q)

dQ
to evaluate

φ(−k∗(Q)) = φ(k∗(Q)) =
1

√
2π

exp
(−(k∗(Q))2

2

)

=
PRσLQ

DG
. (4.3)

Using Equation (4.3), it yields that

d

dQ
C(Q) =

−DF

Q2
+ PR+

−DG

Q2
Φ(−k∗(Q)). (4.4)

From Equation (4.4), we try to solve
d

dQ
C(Q) = 0, then

PR

DG
Q2 =

F

G
+Φ(−k∗(Q)). (4.5)

To compare with results in Horowitz and Daganzo [9], Equation (4.5) implies

√

DG

PR
=

( 1

Q

√

F

G
+Φ(−k(Q))

)

−1
. (4.6)

If we multiple σL
PR

DG
on both sides of Equation (4.6), then it derives the same results

as Equation (24) of Horowitz and Daganzo [9]. However, our derivation is clear. Their

procedure contains too many new expressions which is misleading. Moreover, in Horowitz

and Daganzo [9], they did not try to prove the existence and uniqueness for the solution of

Q with respect to Equation (4.5). Instead, they defined a new expression of x =
DG

PRσLQ
.

The condition of
DG

√
2πPRσL

> Q is equivalent to x >
√
2π. From observation of the

graph, they claimed that if the values of x are between
√
2π and 5.2 that will imply an

extremely high probability of stock out and degree of uncertainty, which could violate

the basic assumptions of the model. Hence, in their paper, they implicitly assumed that

∞ > x > 5.2 that means
5DG

26PRσL
> Q > 0. (4.7)

They used a graphical method to locate the root of Q for Equation (4.5).

Now, we begin to discuss why Equation (4.5) has a unique solution under the con-

dition of Equation (3.6) as
DG

√
2πPRσL

≥ Q > 0. However, we will slightly shrink the

domain to QU ≥ Q ≥ QL such that we can analytical prove the existence and uniqueness
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of the optimal solution with
DG

√
2πPRσL

> QU and QL > 0 that will be explained in the

following.

Motivated by Equation (4.5), we assume an auxiliary function as

g(Q) =
PR

DG
Q2 −

F

G
−Φ(−k(Q)), (4.8)

with
d

dQ
C(Q) =

DG

Q2
g(Q).

Our original goal is to find a lower bound QL and an upper bound QU and to prove

that

(a) g(QL) < 0, (4.9)

(b) g(QU ) > 0, and (4.10)

(c) g′(Q) > 0 for QU > Q > QL. (4.11)

Therefore, if our selection of QL and QU can satisfy the above mentioned conditions of

Equations (4.9)−(4.11), then by the Intermediated Value Theorem, we can prove that

under

QU ≥ Q ≥ QL. (4.12)

then g(Q) = 0 has a unique solution.

Here, we provide an explanation why we need QL > 0. The reason for
DG

√
2πPRσL

>

QU will be self-explanation after our findings of Table 1.

If we try to compute g(0) then we need to derive Φ(−k(0)) such that we have to find

k(0). From our definition of Equation (4.1), we can not compute k(0), even we know

that

lim
Q→0+

k(Q) = lim
Q→0+

√

2 ln
DG

√
2πPRσLQ

= ∞ (4.13)

and then lim
Q→0+

Φ(−k(Q)) = Φ(−∞) = 0, to imply that lim
Q→0+

g(Q) =
−F

G
< 0. However,

to extend the domain of g(Q) from Q > 0 to Q ≥ 0 with the assumption

g(0) = lim
Q→0+

g(Q) (4.14)

that is too technical in inventory system, so we will pick a point very close to zero, say

QL satisfying the wanted property g(QL) < 0.

We obtain that

d

dQ
g(Q) =

2PR

DG
=

1

Q
exp

(−1

2
(k∗(Q))2

)

√

4π ln
DG

2πPRσLQ

. (4.15)
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To prove
d

dQ
g(Q) > 0 for QU > Q > QL is equivalent to verify that

ln
( DG
√
2πPRσLQ

)

>
σ2
L

8Q2
(4.16)

for QU > Q > QL, since exp
( (k∗(Q))2

2

)

=
DG

√
2πPRσLQ

.

Motivated by Equation (4.16), we assume the second auxiliary function

f(Q) = ln
( DG
√
2πPRσLQ

)

−
σ2
L

8Q2
(4.17)

such that to verify
d

dQ
g(Q) > 0 is equivalent to prove that f(Q) > 0. Hence, we convert

the condition of Equation (4.11) to

f(Q) > 0 for QU > Q > QL. (4.18)

We will try to find a feasible domain, QU ≥ Q ≥ QL that satisfies f(Q) > 0, for

QU > Q > QL.

It then follows that

d

dQ
f(Q) =

1

Q3

(σL

2
−Q

)(σL

2
+Q

)

< 0, (4.19)

to imply that f(Q) is a decreasing function of Q for Q ≥
σL

2
. Hence, to prove f(Q) > 0

for QU > Q > QL of Equation (4.18) is equivalent to select QU with

f(QU ) > 0. (4.20)

On the other hand,
QL

2
is a possible candidate for QL.

We begin to show that g
(σL

2

)

< 0 with the data from Horowitz and Daganzo [9].

From the numerical example of Horowitz and Daganzo [9], we know that D = 52000,

F = 2500, G = 2500, P = 100 and R = 0.2. In Figures 2, 3 and 4 of Horowitz and

Daganzo [9], they sketched five curves where
F

G
equals to 0.2, 0.5, 1, 2 and 5, such that

we assume that 0.2 ≤
F

G
≤ 5.

There are two values of σL : 400 and 100, so we execute two examinations. When

σL = 400 then
PR

4DG
σ2
L ≈ 6.2× 10−3. We compute

PR

DG
Q2 −

F

G
= −0.9938 < 0 (4.21)
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when we take Q =
σL

2
.

When σL = 100 then
PR

4DG
σ2
L ≈ 3.8× 10−4. We compute

PR

DG
Q2 −

F

G
= −0.99962 < 0 (4.22)

when we take Q =
σL

2
.

Consequently, we assume that

QL =
σL

2
(4.23)

to imply that

g
(σL

2

)

=
PR

4DG
σ2
L −

F

G
−Φ

(

− k
(σL

2

))

<
PR

4DG
σ2
L −

F

G
< 0 (4.24)

then the condition of Equation (4.9) as g
(σL

2

)

< 0 is satisfied.

Next, we begin to explain how to select our desiredQU that must satisfy two required

properties of Equations (4.20) and (4.10):

(a) f(QU) > 0, and

(b) g(QU ) > 0.

We define a new expression

Qn,m =
( n

m

) DG
√
2πPRσL

, (4.25)

where n and m are positive integer with n < m. We compute f(Qn,m) to derive that

f(Qn,m) =
(

ln
n

m

)

−
π

4

(mPRσ2
L

nDG

)2
. (4.26)

For m = 100 and 91 ≤ n ≤ 100, we list the computation results in the next table.

Table 1: When m = 100, and 91 ≤ n ≤ n, values of f(Qn,m).

n 91 92 93 94 95

f(Qn,100) 0.093736 0.082819 0.72020 0.061337 0.050766

n 96 97 98 99 100

f(Qn,100) 0.040306 0.029953 0.019707 0.009565 -0.000476

Next, we consider our requirement of g(QU ) > 0 such that we will compute

g(Qn,m) =
DG

2πPR

( n

mσL

)2
−

F

G
− Φ

(

−
√

2 ln
m

n

)

. (4.27)
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However, we have a technical problem to evaluate Φ
(

−
√

2 ln
m

n

)

. On the other hand,

we know that

Φ
(

−
√

2 ln
m

n

)

=

∫

−

√
2 ln(m/n)

−∞

1
√
2π

e
−1

t2 dt <

∫ 0

−∞

1
√
2π

e
−1

t2 dt =
1

2
. (4.28)

Therefore, we assume the third auxiliary function

h(Qn,m) = g(Qn,m) + Φ
(

−
√

2 ln
m

n

)

−
1

2
(4.29)

for m = 100 and 91 ≤ n ≤ 100, and then we list the computation results for h(Qn,m) in

the following table.

Table 2: When m = 100, and 91 ≤ n ≤ n, values of f(Qn,100).

n 91 92 93 94 95

h(Qn,100) 3.854 3.973 4.092 4.213 4.335

n 96 97 98 99 100

h(Qn,100) 4.459 4.584 4.710 4.837 4.966

Based on Table 1 and Table 2, if we select

QU =
(23

25

) DG
√
2πPRσL

(4.30)

to yield two desired properties:

g(QU ) > 0, (4.31)

and

f(QU ) > 0. (4.32)

Consequently, we obtain that f(Q) > 0 for QU ≥ Q ≥ QL with its minimum value

f(QU) > 0 and then g′(Q) > 0 for QU > Q > QL which means Equation (4.11) is

satisfied.

Consequently, g′(Q) > 0 for QU > Q > QL, so g(Q) is an increasing function from

g(QL) < 0 to g(QU ) > 0. Therefore, there is a unique solution for g(Q) = 0, say Q∗.

Finally, we will try to prove that Q∗ is the minimum point.

From g(Q) < 0 for QL < Q < Q∗, and g(Q) > 0 for Q∗ < Q < QU , using the relation
d

dQ
C(Q) =

DG

Q2
g(Q), it yields that

d

dQ
C(Q) < 0 for QL < Q < Q∗, and

d

dQ
C(Q) > 0

for Q∗ < Q ≤ QU . We know that C(Q) decreases for QL ≤ Q ≤ Q∗ and C(Q) increases
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for Q∗ < Q ≤ QU so Q∗ is the minimum point. Consequently, under the restriction of

Equation (4.12), we show that the inventory model has a unique optimal solution.

5. Numerical Examples

To be compatible with Horowitz and Daganzo [9], we consider the same numerical

examples with the following data: D = 52000 parts per year, F = $2500 per shipment,

G = $2500 per shipment, P = $100 per part, R = 0.2 per year (20%), L = 7 days,

σL = 400 parts for the first example, and σL = 100 parts for the second example.

Example 1. We find that g(2663) = −1.008×10−4 and g(2664) = 6.726×10−4, which is

consistent with our results of g(Q) as an increasing function of Q. We know the optimal

real solution, say Q∗, satisfying 2663 < Q∗ < 2664. However, this research is conducted

for automobile parts so we need to seek the integer solution. From C(2663) = 117196.457

and C(2664) = 117196.463. Therefore, the optimal order quantity is Q∗ = 2663.

Comparing with Horowitz and Daganzo [9], they derived that Q∗ = 2700 and C∗ =

117210, our saving is 13.54.

Comparing our analytic approach with the graphic method of Horowitz and Da-

ganzo [9], we can accurately obtain the optimal integer solution and the improvement is
2700 − 2663

2663
= 1.39%.

Example 2. We find that g(2569) = −4.172× 10−4 and g(2570) = 3.662× 10−4, which

is consistent with our results of g(Q) as an increasing function of Q. We know the

optimal real solution, say Q∗, satisfying 2569 < Q∗ < 2570. As in Example 1, we search

for the optimal positive integer solution. From C(2569) = 107081.7471 and C(2570) =

107081.7466. Hence the optimal order quantity is Q∗ = 2570.

Comparing with Horowitz and Daganzo [9], they derived that Q∗ = 2600 and C∗ =

107130, so our saving is 48.25.

Once again, our analytical approach derives the optimal solution and the improve-

ment is
2600 − 2570

2570
= 1.17%.

From the two examples from Horowitz and Daganzo [9], we demonstrate that our

approach can accurately find the optimal point. Our improvement for saving cost may

look like insignificant. On the other hand, for examples 1and 2, we reduce the production

of 37 and 30 cars respectively and also save money that is a meaningful action to against

the global warming.

6. Further Discussion on the Possible Range for Minimum Solution

Here, we try to offer a further discussion of our restriction of the range of Q. From

the theoretical result of Horowitz and Daganzo [9], they will use graphical method to

locate an approximated optimal solution for
DG

PRσL
> Q > 0 so that the search range is

25931.26 > Q > 0.
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Based on observation, they reduced the search range to
5DG

26PRσL
> Q > 0 that is

12500 > Q > 0. However, they did not insure that in that range the inventory model

has an optimal solution. Our possible range for Q is
23DG

25PR
√
2πσL

≥ Q ≥
σL

2
, then our

search range is 23856.76 > Q > 50.

We compare the coverage of Horowitz and Daganzo [9] and ours to compute that

12500 − 0

25931.26 − 0
= 48.20%, (5.1)

and
23856.76 − 50

25931.26 − 0
= 91.81%, (5.2)

to reveal that they only cover 48% of the possible domain of Q to guarantee the non-

negativity of k∗(Q) and they did not discuss the existence and uniqueness of the optimal

order quantity.

On the other hand, we cover more than 91% of the possible domain of Q. More

importantly, we can prove the existence and uniqueness of the optimal order quantity.

We can always prove that
23DG

25PR
√
2πσL

>
5DG

26PRσL
such that our upper bound for the

possible range is better than that of Horowitz and Daganzo [9]. On the other hand, our

lower bound of
σL

2
is always worse than that of Horowitz and Daganzo [9], which means

that we have a worse lower bound but a much better upper bound. Moreover, in our

possible range, we can insure the inventory model has an optimal solution. We sacrifice a

little range of
(

0,
σL

2

)

to guarantee the existence and uniqueness of the optimal solution.

From the optimal solution for the second example, Q∗ = 2570 with
σL

2
= 50 may indicate

that Q∗ is far away from
σL

2
such that our restriction of Q ≥

σL

2
can be accepted as a

reasonable condition.

7. Conclusion

We provide a detailed analytical procedure to show that after shrinking the original

domain (up to 91%) we can prove the existence and uniqueness of the optimal solution.

In Horowitz and Daganzo (1986), they applied a graphical method to locate an approx-

imated optimal solution where their searching sub-domain is about 48% of the original

domain. The managerial meaning of our findings is that we produce fewer cars and also

save more money that is beneficial both for environment and economy. Our derivations

can help researchers develop their mathematical approach to locate the optimal solution

for future inventory models.
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