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Abstract

In the last decade, planning of closed-loop supply chains in different strategic, tactical,

and operational levels has attracted many interests due to economic reasons, environmental

challenges, and government legislations. This paper presents a novel linear programming

model for the integrated production and distribution planning in closed-loop supply chains

under uncertainty. The proposed model involves multi-product and multi-period which con-

siders multiple transportation modes, direct or indirect shipments, advertising costs, and

several customer zones for different types of products and also attempts to integrate pro-

duction and distribution plans in the forward and reverse sides of the closed-loop supply

chain, simultaneously. To deal with uncertain input data, a robust optimization counterpart

based on polyhedral uncertainty set is developed to obtain optimal solutions immunizing

the problem for any realization of uncertain parameters in the given polyhedral uncertainty

set. Computation results for a numerical example under different scenarios are discussed

to give insights about the features of the proposed robust optimization model in handling

the uncertainty of parameters. Finally, some sensitivity analyses are performed to show the

behaviour of the robust and deterministic models respect to changes of uncertainty levels of

parameters as well as the amounts of important parameters such as demands and returns.

Keywords: Integrated production and distribution planning, closed-loop supply chain,

robust optimization, polyhedral uncertainty set.

1. Introduction

Closed-loop supply chain (CLSC) planning for the long-term and mid-term planning

horizon is one of the prominent problems which has attracted many interests by the

academic researchers and practitioners. CLSC is the network of organizations, people,

activities, information and resources involved in providing new goods from suppliers to

the customers and collecting of used products from final customers and remanufacturing,

recovering or disposal them in a suitable way [4, 5, 25]. Many companies such as Dell, HP,

Kodak, Canon, and Xerox have achieved many economic advantages through collecting

and recovering the used products.
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The increasing interest in evaluating the performance of supply chain networks over

the past years indicates the need for the development of complex optimization models

able to answer unsolved questions in the context of production and distribution plan-

ning [9, 11, 29]. On the other hand, recovering and redistribution of used products

has attracted many attentions by the researchers and practitioners in the last decade

due to environmental challenges, governmental limitations and economic reasons [3, 19].

However, many researchers [3, 25] have stated that planning for the forward and reverse

supply chain, separately, leads to sub-optimality in the planning of supply chain. Conse-

quently, the main aim of an integrated production and distribution planning model in a

closed loop supply chain would be determining the amount of products produced in the

plants, the amount of products recovered in recovery centres, the amount of flows be-

tween different entities existing in the different echelons of the supply chain, the amount

of inventories to be stored in distribution centres, the amount of collected products,

and the amount of recoverable and non-recoverable products. Notably, other forms of

planning such as master production schedule, capacity requirements planning and mate-

rial requirements planning follow the outcomes of aggregate production and distribution

planning and are determined in a hierarchical way [10, 22] according to supply chain

planning matrix [27].

Another important issue which should be addressed in a mid-term planning hori-

zon is handling the uncertainty of parameters emerged from turbulent and competitive

environments. Typically, there are three approaches to deal with the uncertainty of

such problems namely stochastic programming, fuzzy/ possibilistic programming, and

robust optimization methods [25]. Stochastic programming approach is applied when

the probability distributions of uncertain parameters are known via sufficient and re-

liable historical data [1]. Possibilistic programming can be used when the uncertain

parameters are expressed based upon insufficient available historical data and subjective

opinions of decision makers (DMs). The robust optimization method is applied when

historical data about the uncertain parameters and also the infeasibility of the problem

cannot be tolerated [2]. In this method, uncertainty of parameters is assumed to be

varied within the given set and the robust counterpart optimization model seeks for the

solutions immunizing the problem for any potential realizations of uncertain parameters.

In this paper, we present a novel model for multiple products, multiple periods in

closed-loop supply chains (IPDPCLSC) consisting of multiple production sites and trans-

portation modes which integrates production and distribution plans in the forward and

reverse sides of the closed-loop supply chain, simultaneously. The developed model ac-

counts for the uncertainty of parameters where there is no sufficient historical data. The

paper has two major applied and theoretical contributions that differentiate it from those

existing in the literature. First, it presents an optimization model for the integrated pro-

duction and distribution planning in closed-loop supply chains that takes many real-world

assumptions into account such as direct or indirect shipments, several customer zones

for new, recovered, and non-recovered products, service level of customers, and multi-

ple transportation modes. Second, it introduces utilization of the robust optimization
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method based on polyhedral uncertainty set to deal with the deep uncertainty of parame-

ters where we just know how they change within a given polyhedral set. Although, some

researchers have already applied the robust optimization approach for the worst-case

conditions using box uncertainty set in closed-loop supply chain network design problem

[8, 25, 32], nevertheless, to the best of our knowledge, there is no research paper ap-

plying the robust optimization approach with polyhedral uncertainty set for integrated

production and distribution planning in the context of closed-loop supply chains.

The remainder of this paper is organized as follows. The relevant literature is re-

ported in the next Section. In Section 3, we define our notations, describe our assump-

tions and develop a new linear programming model for the IPDPCLSC. The concepts of

the applied robust optimization method for the polyhedral uncertainty set are discussed

in Section 4. Computational results with some conducted sensitivity analyses are re-

ported in Section 5. Section 6 states the conclusion and managerial implications of this

paper and open some future research directions.

2. Literature Review

Nam and Logendran [21] provided a comprehensive review on aggregate production

planning (APP) to investigate the advantages and deficiencies of the proposed models

and opened channels for future researches. Mula [18] presented a general review covering

different aspects of production planning such as supply chain structure, decision level,

modelling approach, purposes, shared information, limitations, novelty and applications

in the context of supply chain management. This review mainly focuses on tactical

level of decision making in production and distribution echelons including mathematical

programming and centralized planning models rather than strategic or operational level

of decision making in this context. They argue that the literature suffers from lack

of models considering integration of decisions pertaining to transportation modes and

recycling/recovering operations with the production and distribution planning in forward

supply chain management. Another comprehensive review in this field that covers the

strategic, tactical, and operational levels of decision focusing on strategic level is the

work of Souza [26]. Govindan et al. [38] presented a comprehensive review to explore

the literature gaps in reverse logistics and closed-loop supply chains and suggested some

efficient future research directions.

At the following, we review the most relevant works that cover many different aspects

of complex modelling and also different approaches used to handle the uncertainty of the

parameters. It should be noted that we do not care about solution methods in this

review. Therefore, we focus on modelling and the approaches applied to deal with the

uncertain parameters.

Torabi and Hassini [30] considered a multi-objective supply chain master planning

in fuzzy environments for integrating different aspects in a multi-product and multi-

period supply chain. Also, the proposed model covers quantity and time-dependent

discount policy for different product in different periods. As an extension to this work,

Torabi and Hassini [31] presented a multi-objective supply chain master planning model
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to integrate procurement and distribution plans with production planning in a multi-

site manufacturing setting with a case study in an automaker. Leung et al. [15] pre-

sented a scenario-based robust optimization approach, which is a branch of scenario-based

stochastic programming, to face with the uncertainty of multi-site production planning

problem. Ghasemy Yaghin et al. [7] presented a new approach by introducing pricing

(markdown policy) concepts in modelling of APP problems. Although this approach

imposes non-linearity to the proposed model, the model would be so compatible with

real life assumptions. In their model, demand of products is a function of advertising

cost and price in any period. The model maximizes the total profit of manufacturers

in the first objective, total profit of retailers in the second objective and qualitative-

oriented aspects for retailing in the third one. Jamalnia and Soukhakian [10] presented a

fuzzy multi-objective nonlinear model for the APP with imprecise parameters including

both quantitative goals (production costs, carrying and back ordering costs and costs of

changes in workforce level) as well as a qualitative goal in terms of customer satisfac-

tion regarding the company’s commitments about delivery times and quality of products.

They also considered the learning curves effects for workers in production planning. Wang

and Liang [33] developed a multi-objective APP model to reduce production costs, car-

rying and backordering costs, and rate of change in labour levels. They accounted for

fuzziness in constraints and used fuzzy goal programming technique to deal with the mul-

tiple objectives. They also demonstrated the importance of considering the time value of

money in production planning models by conducting a sensitivity analysis on the escalat-

ing factor. Liu and Papageorgiou [16] presented a multi-objective model for concurrent

production, distribution and capacity planning in global supply chains. The proposed

model seeks efficient solutions for satisfying the three objectives including minimizing

costs, transportation time, and lost sales as well as optimal capacity expansion plan-

ning during the planning horizon. Torabi and Moghaddam [29] developed an integrated

multi-site production-distribution model under fuzziness of input data while accounting

for possibility of having lateral transshipment of products between manufacturing plants.

Fahimnia et al. [6] presented multiple products, multiple periods aggregate production

and distribution planning model which considers most of real-life assumptions such as

possibility of having multiple routes (i.e., direct and/or indirect shipments), multiple

plants, multiple distribution centres, outsourcing and inventory holding. Table 1 shows

the details of some relevant works.

The review of literature shows there are limited research works for tactical (mid-

term) planning in reverse and closed-loop supply chains. Kim et al. [12] proposed a

MILP model, under deterministic conditions, for the reverse logistics network planning

that trades-off between two alternatives including acquiring items from suppliers or sup-

plying items from those provided from disassembling of used products for producing new

products. Meanwhile, they avoid integrating decisions related to forward and reverse

logistics, simultaneously. Shi et al. [28] studied the production planning optimality for

a closed-loop supply chain under uncertainty of demand and returns, which is price-

sensitive. They assumed that the uncertain parameters have stochastic behaviour based

on normal distribution with known mean and standard deviation and then proposed a
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solution method based on Lagrangian relaxation method. Kenne et al. [13] developed a

production planning model for the forward-reverse logistics under machine failures that

uses dynamic stochastic programming method to solve the proposed continuous model.

Pereira Ramos et al. [35] developed a multi-objective model with aim of optimiz-

ing economic, environmental and social objectives in a reverse logistics systems. Their

proposed model supports tactical and operational level decision making in a reverse

logistics system. Niknejad and Petrovic [36] proposed a MILP model to optimize inven-

tory control and production planning decisions in an integrated forward-reverse supply

chain network under demand and returns uncertainty. They used fuzzy mathematical

programming method to deal with the uncertainty of the problem. Chuang et al. [37]

studied closed-loop supply chain models for a high-tech product. They investigated three

alternatives for collecting the used product from customers including: (1) collecting the

used products by the manufacturer; (2) collecting the used products by the retailer for

the manufacturer; and (3) collecting the used products by the third-party firm for the

manufacturer.

Niknamfar et al. [39] proposed a stochastic robust optimization method to an aggre-

gate production-distribution planning in a three echelon supply chain. They considered

regular time, overtime, outsourcing, hiring, firing, inventory holding, backordering, and

machine capacity in modelling the problem. Cheng et al. [40] presented an improved ant

colony optimization method to optimize scheduling activities in a production-distribution

planning problem with the aim of minimizing total costs. They considered third-party

logistic (3PL) provider for distribution of products in supply chain. The proposed heuris-

tic algorithm could solve the proposed large size problem in reasonable time. Ma et al.

[41] used a bi-level programming approach to optimize integrated production-distribution

planning in a supply chain. Their model considers conflict and coordination in supply

chain management. They also proposed a two stage genetic algorithm with a fuzzy

logic controller algorithm to solve the problem for real sizes. Camacho-Vallejo et al.

[42] extended a heuristic algorithm based on scatter search that considers the Stackel-

berg’s equilibrium to solve a production-distribution planning problem with the aim of

optimizing operation and transportation costs.

Notably, some models have tried to optimize strategic decisions of the CLSC, such as

determining the number and location of facilities (e.g., [5, 23]). Although in such studies,

the optimal decisions about the amount of aggregated amounts of production, inventory

and distribution are taken, the main aim is determination of strategic decisions such as

facility location, technology selection and capacity sizing. Indeed, the output of these

models about the amount of production, inventory and distribution could not be imple-

mented for various periods with their specific features in a mid-term planning horizon.

3. Mathematical Formulation

The following main assumptions are made in developing the proposed IPDPCLSC

model:
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Table 1: Review of some existing models.

Reference structure period
Marketing

Backorder
Transportation

Delivery time Approach
aspects mode

[31] Forward Multiple - - - Considered Fuzzy

[15] Forward Multiple - Considered - - SRo.

[7] Forward Multiple Considered - - negligible Fuzzy

[10] Forward Multiple - Considered - Negligible Deter.

[33] Forward Multiple - Considered - - Fuzzy

[16] Forward Multiple - Considered - Considered Deter.

[29] Forward Multiple - Considered - Considered fuzzy

[12] Reverse Multiple - - - - Deter.

[28] Closed-loop Single - Considered - - Sto.

Our work Closed-loop Multiple Considered Considered Considered Considered Ro.

Deter. (Deterministic), Sto. (Stochastic), Ro. (Robust), SRo (Robust stochastic).

• Customers are divided in to three groups: new products’ customers, recovered prod-

ucts’ customers, and materials’ customers (customers of non-recoverable products).

• The main parameters directly affected by customer’s behaviors including demands

of new and recovered products, amount of returns, quality of returned products,

selling price of different products, purchasing costs, shortage costs are tainted with

uncertainty.

• Due to lack of sufficient historical data, there is no known probability distribution to

show the behavior of uncertain parameters in the future. Therefore, they are handled

via uncertainty sets in the form of a given interval for each parameter.

• Different transportation modes are utilized to deliver products to customer groups;

however, collecting of used products is performed through only one transportation

mode.

• Advertising costs are spent in both customer zones and the maximum budget for

such costs is limited.

• All demands of new products must be fulfilled. However, shortage is permitted for

recovered products but the back-orders of recovered products should be fulfilled in

the next period.

• All used products are collected and purchased with reasonable price.

• Sub-contracting is not allowed.

• All facilities in different echelons have limited capacities.

• Manufacturing new products and recovering used products are carried out at the

hybrid manufacturing/recovery (HMR) centres.
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• Distribution of new products and redistribution of recovered products are performed

at the hybrid distribution/redistribution (HDR) centers.

• Besides traditional shipment of both new and recovered products, direct shipment of

new products from HMR centers to customer zones is permitted.

• Safety stock is hold only for new products at HDR centers.

3.1. Problem description and notations

The concerned aggregate production-distribution planning model for closed-loop sup-

ply chains (IPDPCLSC) is of multi-site, multi-echelon, multi-period, and multi-product

network type. Figure 1 illustrates the structure of the problem. The dashed lines show

the flow of used and recovered products, while the continuous lines show the flow of new

products between facilities. Other notations noted on the Figure 1 have been defined

in notations. A practical situation of such problem can be found in several industries

such as printers and copiers production, namely Xerox and Kodak companies, or digital

cameras production, namely Canon Company. As depicted in Figure 1, new products

are produced and also recovered products are recovered in HMR centres and shipped

to HDR sites. As it was mentioned by Pishvaee et al. [24], hybrid processing facilities

offer potential cost savings compared with separate distribution or collection centres in

a closed-loop supply chain network.
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Figure 1: The concerned closed-loop supply chain structure.

In addition, new products could be directly shipped from HMR centres to customer

zones to fulfil new products’ demands before reaching due dates. At HDR centres,

some products are stored and the rest is shipped to customer zones through different

transportation modes. Also, some new products are hold as safety stock to face with

unscheduled changes in customer needs.
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It is worthy to note that new products’ customers have higher priority respect to

recovered products’ customers when assigning resources to customers. Therefore, di-

rect shipment of products and holding safety stock options are presented only for new

products. New products are delivered to customers in a pull manner, while demands

of recovered products are fulfilled in a push way where their raw material are provided

from collected used products and thus are limited. Therefore, some demands of recovered

products may not be fulfilled. Used products are purchased from customer zones and

shipped to collection centres. After testing and evaluating the quality of used products

in collection centres, they are classified into recoverable and non-recoverable products.

The recoverable products are shipped to HMR centres and the non-recoverable products

are sold to material customers.

In the proposed IPDPCLSC model, delivery time of products to customers might be

violated which may lead to deviations from predetermined customer service levels based

on senior management’s preferences. For example, customers with targeted service level

100

The following notations are used to formulate the problem mathematically.

Indices

i Index of hybrid manufacturing/recovery centres (i = 1, . . . , I).

j Index of hybrid distribution/redistribution centres (j = 1, . . . , J).

k Index of first markets’ customer zones (newproducts) (k = 1, . . . ,K).

l Index of second markets’ customer zones (recoveredproducts) (l = 1, . . . , L).

m Index of collection centres (m = 1, . . . ,M).

n Index of transportation modes (n = 1, . . . , N).

p Index of products (p = 1, . . . , P ).

t Index of time periods (t = 1, . . . , T ).

Parameters

D1kpt Demand of customer k for new product p in period t.

D2lpt Demand of customer l for recovered product p in period t.

Re1kpt Amount of returns of product p from customer k in period t.

Re2lpt Amount of returns of product p from customer l in period t.

β1p Recoverable percentage of product p collected from the first markets’ cus-

tomers in period t.

β2p Recoverable percentage of product p collected from the second markets’ cus-

tomers in period t.
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SS1jpt Safety stock level of new product p at distribution/redistribution centre j in

period t.

Prjknpt Unit Selling price of new product p shipped from distribution/redistribution

centre j to customer k by transportation mode n in period t.

Pr1iknpt Unit Selling price of new product p shipped from manufacturing/recovery

centre i to customer k by transportation mode n in period t.

Pr2jlnpt Unit Selling price of recovered product p shipped from distribu-

tion/redistribution centre j to customer l by transportation mode n in period

t.

Pr3pt Unit Selling price of non-recoverable product p sold to material customers in

period t.

Pur1kpt Unit Purchasing cost of used product p from customer k in period t.

Pur2lpt Unit Purchasing cost of used product p from customer l in period t.

Pcipt Manufacturing cost of new product p at manufacturing/recovery centre i in

period t.

Rcipt Unit Recovery cost of used product p at manufacturing/recovery centre i in

period t.

Hpcmpt Unit Processing and quality test costs of used product p at collection centre

m in period t.

Hic1jpt Unit holding cost of new product p at distribution/redistribution centre j in

period t.

Hic2jpt Unit holding cost of recovered product p at distribution/redistribution centre

j in period t.

sclpt Unit shortage cost of recovered product p for customer l in period t.

Ha1kpt Unit advertising cost of product p at customer zone k in period t.

Ha2lpt Unit advertising cost of product p at customer zone l in period t.

r Interest rate.

BCt Maximum budget assigned for advertising and marketing activities in period

t.

Tcijnpt Unit transportation cost of new product p shipped from manufactur-

ing/recovery centre i to distribution/redistribution centre j by transportation

mode n in period t.

Tc1iknpt Unit transportation cost of new product p shipped from manufactur-

ing/recovery centre i to customer k by transportation mode n in period t.

Tc2jknpt Unit transportation cost of new product p shipped from distribu-

tion/redistribution centre j to customer k by transportation mode n in period

t.

Tc3jlnpt Unit transportation cost of recovered product p shipped from distribu-

tion/redistribution centre j to customer l by transportation mode n in period

t.
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Tc4kmpt Unit transportation cost of used product p shipped from customer k to collec-

tion centre m in period t.

Tc5lmpt Unit transportation cost of used product p shipped from customer l to collec-

tion centre m in period t.

Tc6mipt Unit transportation cost of used product p shipped from collection centre m

to manufacturing/recovery centre i in period t.

Tdikn Delivery time from manufacturing/recovery centre i to customer k by trans-

portation mode n.

Tekp Expected delivery time of customer k for new product p in any period.

Td1jkn Delivery time from distribution/redistribution centre j to customer k by trans-

portation mode n (in days).

Td2jln Delivery time from distribution/redistribution centre j to customer l by trans-

portation mode n (in days).

Te1lp Expected delivery time of customer l for recovered product p in any period

(in days).

Sl1k Average predetermined service level for customer k (the percentage of on-time

deliveries).

Sl2l Average predetermined service level for customer l (the percentage of on-time

deliveries).

bp Required storage capacity per unit of product p (volume).

b1p Required production capacity per unit of product p (machine-hour/unit).

b2p Required recovery capacity per unit of product p (machine-hour/unit).

b3p Required handling capacity per unit of product p at collection centres

(machine-hour/unit).

Ca1i Maximum capacity of hybrid manufacturing/recovery centre i.

Ca2j Maximum capacity of hybrid distribution/redistribution centre j.

Ca3m Maximum capacity of collection centre m.

Variables

xjknpt Quantity of new product p shipped from distribution/redistribution j to cus-

tomer k by transportation mode n in period t.

x1iknpt Quantity of new product p shipped from manufacturing/recovery centre i to

customer k by transportation mode n in period t.

x2jlnpt Quantity of recovered product p shipped from distribution/redistribution cen-

tre j to customer l by transportation mode n in period t.

x3ijnpt Quantity of new product p shipped from manufacturing/recovery centre i to

distribution/redistribution centre j by transportation mode n in period t.
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x4ijnpt Quantity of recovered product p shipped from manufacturing/recovery centre

i to distribution/redistribution centre j by transportation mode n in period t.

xeipt Quantity of new product p manufactured at manufacturing/recovery centre i

in period t.

ykmpt Quantity of returned product p shipped from customer k to collection centre

m in period t.

y1lmpt Quantity of returned product p shipped from customer l to collection centre

m in period t.

y2pt Quantity of scraped product p sold to material customers in period t.

y3mipt Quantity of recoverable product p shipped from collection centre m to manu-

facturing/recovery centre i in period t.

IC1jpt Inventory level of product p at distribution/redistribution centre j in period

t.

IC2jpt Inventory level of recovered product p at distribution/redistribution centre j

in period t.

λlpt Backorder quantity of recovered product p for customer l in period t.

Rppt Quantity of recoverable product p in period t.

3.2. Problem formulation

Objective function The proposed IPDPCLSC aims to maximize the net present value

of total profit (that is, total profit = total revenues − total costs). The total revenues

are resulted from products sold in different customer zones including customers of new

products, customers of recovered products, and customers of non-recoverable products

and thus can be formulated as follows:
∑

j

∑

k

∑

n

∑

p

∑

t

Prjknptxjknpt +
∑

i

∑

k

∑

n

∑

p

∑

t

Pr1iknptx2iknpt

+
∑

j

∑

l

∑

p

∑

n

∑

t

Pr2jlnptx2jlnpt +
∑

p

∑

t

Pr3ptxpt

Hereafter, a bar sign is used to show each uncertain parameter (for example, selling

prices of products are uncertain parameters in the total revenue function). Note that

new products could be directly shipped from the HMR sites to customers or shipped

through HDR centres. Although the costs incurred by direct shipments are higher than

traditional indirect shipments, a particular case of interest is that the selling price in both

types of shipments to be equal. In fact, direct shipment strategy is used to fulfil customer

expectations within their maximal allowable times and thus customers should not charge

more costs due to direct shipments utilized by the companies in supply chain. On the

other hand, utilizing direct shipment strategy via different transportation modes boosts

customer’s beliefs about the delivery times obligated by the supply chain members.
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The total costs which is a common efficiency criterion to optimize decisions made to

use different resources in supply chain planning models efficiently [38] include transporta-

tion costs, production and recovering costs, quality testing costs of collected products,

inventory holding costs, purchasing the used products, advertisement costs, and shortage

costs.

In this regard, the transportation costs encompass shipping costs between different

echelons of the closed-loop supply chain in both forward and reverse sides via various

transportation modes. The total transportation costs (which are deterministic) can be

formulated as follows:
∑

i

∑

j

∑

n

∑

p

∑

t

Tcijnptx3ijnpt +
∑

i

∑

k

∑

n

∑

p

∑

t

Tc1iknptx1iknpt

+
∑

j

∑

k

∑

n

∑

p

∑

t

Tc2jknptxjknpt +
∑

j

∑

l

∑

n

∑

p

∑

t

Tc3jlnptx2jlnpt

+
∑

k

∑

m

∑

p

∑

t

Tc4kmptykmpt +
∑

l

∑

m

∑

p

∑

t

Tc5lmpty1lmpt

+
∑

m

∑

i

∑

p

∑

t

Tc6mipty3mipt +
∑

i

∑

j

∑

n

∑

p

∑

t

Tcijnptx4ijnpt

The other types of costs could be written as follows:

Production and recovering costs in HMR centres:
∑

i

∑

p

∑

t

Pciptxeipt +
∑

i

∑

p

∑

t

Rcipt

(

∑

m

y3mipt

)

.

Handling costs in collection centres including the testing and evaluating of used products:
∑

m

∑

p

∑

t

Hpcmpt

(

∑

k

ykmpt +
∑

l

yllmpt

)

.

Inventory holding costs in HDR centres:
∑

m

∑

i

∑

p

∑

t

Tc6mipty3mipt +
∑

i

∑

j

∑

n

∑

p

∑

t

Tcijnptx4ijnpt.

Purchasing costs of used products from customers (which are uncertain):

∑

k

∑

p

∑

t

Pur1kpt

(

∑

m

ykmpt

)

+
∑

l

∑

p

∑

t

Pur2lpt

(

∑

m

y1lmpt

)

.

Advertisement costs in different customer zones for new and recovered products:
∑

k

∑

p

∑

t

Ha1kpt

(

∑

j

∑

n

xjknpt+
∑

i

∑

n

x1iknpt

)

+
∑

l

∑

p

∑

t

Ha2kpt

(

∑

j

∑

n

x2jlnpt

)

.

Finally, shortage costs related to recovered products (which are uncertain):
∑

l

∑

p

∑

t

sclptλlpt.
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It is worthy to note that to calculate the net present values of the total revenues and total

costs, the coefficient
1

(1 + r)t
in which r denotes the interest rate, should be multiplied

by the above-mentioned equations. Consequently, we would have the following objective

function which maximizes the total profit of the proposed IPDPCLSC model:

MaxZ =
∑

t

1

(1 + r)t

















































































[

∑

j

∑

k

∑

n

∑

p

Prjknptxjknpt +
∑

i

∑

k

∑

n

∑

p

Pr1iknptx1iknpt

+
∑

j

∑

l

∑

p

∑

n

Pr2jlnptx2jlnpt +
∑

p

Pr3pty2pt

]

−
[

∑

i

∑

j

∑

n

∑

p

Tcijnptx3ijnpt +
∑

i

∑

k

∑

n

∑

p

Tc1iknptx1iknpt

+
∑

j

∑

k

∑

n

∑

p

Tc2jknptxjknpt +
∑

j

∑

k

∑

n

∑

p

Tc3jknptx3jknpt

+
∑

k

∑

m

∑

p

Tc4kmptykmpt +
∑

l

∑

m

∑

p

Tc5lmpty1lmpt

+
∑

m

∑

i

∑

p

Tc6mipty3mipt +
∑

i

∑

j

∑

n

∑

p

Tcijnptx4ijnpt

+
∑

i

∑

p

Pciptxeipt +
∑

i

∑

p

Rcipt

(

∑

m

y3mipt

)

+
∑

m

∑

p

Hpcmpt

(

∑

k

ykmpt +
∑

l

y1lmpt

)

+
∑

j

∑

p

HIc1jptIc1jpt +
∑

l

∑

p

HIc2jptIc2jpt

+
∑

k

∑

p

Pur1kpt

(

∑

m

ykmpt

)

+
∑

l

∑

p

Pur2lpt

(

∑

m

y1lmpt

)

+
∑

k

∑

p

Ha1kpt

(

∑

j

∑

n

xjknpt +
∑

i

∑

n

x1iknpt

)

+
∑

l

∑

p

Ha2lpt

(

∑

j

∑

n

x2jlnpt

)

+
∑

l

∑

p

sclptλlpt

]

















































































(3.1)

Model constraints

Inventory balance constraints in the forward side: The following constraints express the
inventory-related and demand satisfaction constrains in the HMR and HDR centres in

the forward side.
∑

j

∑

n

xjknpt +
∑

i

∑

k

x1iknpt = D1kpt, ∀ k, p, t (3.2)

Ic1jp,t−1 +
∑

i

∑

n

x3ijnpt − Ic1jpt =
∑

k

∑

n

xjknpt, ∀ j, p, t (3.3)

Ic1jpt ≥ SS1jpi, ∀ j, p, t (3.4)

xeipt =
∑

j

∑

n

x3ijnpt +
∑

k

∑

n

x1iknpt, ∀ i, p, t (3.5)

∑

j

∑

n

x2jlnpt + λlpt − λip,t−1 = D2lpt, ∀ l, p, t (3.6)

ic2jp,t−1 +
∑

i

∑

n

x4ijnpt − Ic2jpt =
∑

l

∑

n

x2jlnpt, ∀ j, p, t (3.7)
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Constraints (3.2) ensure that all demands of customers for new products are satisfied.

Constraints (3.3) and (3.4) are inventory balancing equations and safety stock levels at

HDR centres. It is worthy to note that determination of the safety stock levels could

be performed via the forward inventory coverage concept [14]. That is, the safety stock

levels in current period are calculated according to the demands of customers in the next

period as follows: SS1jpt = αpD1kp,t+1, where αp and D1kp,t+1 indicate the forward

inventory coverage factor of new product p and the most possible value of demands for

new products at the next period, respectively. Obviously, the safety stock levels for

the last period T is achieved based on the first period demands for the new product.

Constraint (3.5) show the total new products produced at HMR centres in any period.

Constraints (3.6) and (3.7) are the demand constraint, being satisfied or being left as

back-orders, and inventory balancing equation for the recovered products at HDR centres.

Inventory balance constraints in the reverse side:
∑

m

ykmpt = Re1kpt, ∀ k, p, t (3.8)

∑

m

y1lmpt = Re2lpt, ∀ l, p, t (3.9)

Rppt = β1p
∑

k

∑

m

ykmpt + β2p
∑

l

∑

m

y1lmpt, ∀ p, t (3.10)

y2pt = (1− β1p)
∑

k

∑

m

ykmpt + (1− β2p)
∑

l

∑

m

y1lmpt, ∀ p, t (3.11)

Rppt =
∑

m

∑

i

y3mipt, ∀ p, t (3.12)

∑

j

∑

n

x4ijnpt =
∑

m

y3mipt, ∀ i, p, t (3.13)

Constraints (3.8) and (3.9) assure that all of the used products are collected from both

customer types. Constraints (3.10) and (3.11) distinguish the collected products into

the recoverable and non-recoverable products based on their qualities. Constraint (3.12)

represents that all recoverable products shipped from collection centres to the HMR

centres are recovered. Constraint (3.13) links the amount of recovered products in the

forward side with the recoverable products shipped to HMR sites in the reverse side.

Indeed, the balance of recovered products is established at HMR centres.

Delivery time constraints:

Tdiknx1iknpt − (1− slk)Tekpx1iknpt ≤ Tekpx1iknpt, ∀ i, k, n, p, t (3.14)

Td1jknx1jknpt − (1− slk)Tekpxjknpt ≤ Tekpx1jknpt, ∀ j, k, n, p, t (3.15)

Td2jlnx2jlnpt − (1− sl1l)Te1lpx2jlnpt ≤ Te1lpx2jlnpt, ∀ j, l, n, p, t. (3.16)

Constraints (3.14) and (3.15) state that the new products are delivered to corresponding

customers according to predetermined customer service levels about the new products’

deliveries. For example, customers with targeted service level 100% (i.e., slk = 1) will
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receive new products in their expectation time. Constraint (3.16) is similar to constraints

(3.14) and (3.15) but for the recovered products.

Capacity constraints:

∑

p

b1pxeipt +
∑

j

∑

n

∑

p

b2px4ijnpt ≤ ca1i, ∀ i, t (3.17)

∑

i

∑

n

∑

p

bpx3ijnpe+
∑

i

∑

n

∑

p

bpx4ijnpt+
∑

p

bpIc1jpt+
∑

p

bpIc2jpt≤ca2j , ∀j, t (3.18)

∑

k

∑

p

b3pykmpt +
∑

l

∑

p

b3py1lmpt ≤ ca3m, ∀ m, t. (3.19)

Constraint (3.17) represents the maximum capacity level utilizations in HMR centres for

both new and recovered products. Constraints (3.18) and (3.19) are similar to constraint

(3.17) for the HDR and collection centres, respectively. Constraint (3.20) demonstrates

that the amount of new products directly shipped is restricted. This could be explained

due to budget limitations about direct shipment of products.

∑

i

∑

k

∑

n

∑

p

∑

t

x1iknpt ≤ UB
(

∑

k

∑

p

∑

t

D1kpt

)

. (3.20)

Budget limitation:

∑

i

∑

k

∑

p

Ha1kpt

(

∑

j

∑

n

xjknpt+
∑

i

∑

n

x1iknpt

)

∑

j

∑

l

∑

n

∑

p

Ha2lptx2jlnpt≤BCt,∀ t.

(3.21)

Constraint (3.21) considers the budget limitation for advertisement activities in different

customer zones in any period. Finally, constraint (3.22) indicates the non-negativity and

type of different decision variables.

xjknpt,x1iknpt,x2jlnpt,x3ijnpt,x4ijnpt,λlpt,xeipt,ykmpt,y1lmpt,y2pt,y3mipt,Ic1jpt,Ic2jpt≥0

∀ i, j, k, n, p, l,m, t. (3.22)

It is worthy to note that constraints (3.2) and (3.6) could be written in inequality form

to reduce computational complexity of the proposed model. Meanwhile, since the robust

counterpart of equality form is different from the inequality form we have to write these

constraints in equality form. Indeed, as described later (see Section 4) when these con-

straints are written in inequality form the degree of robustness of the model is increased

through paying unnecessary costs.

We have considered demand of new and recovered products, the selling price and also

shortage cost as uncertain parameters in the forward side of the proposed IPDPCLSC

model. The selling price have uncertain nature, since it is influenced by different factors

such as inflation rate, interest rate, fluctuation of raw material costs, production costs,

and etc. Also, since shortage cost is associated with backorder and lost sale costs, it is an

uncertain parameter. According to Hasani et al. [8] demand of products has high degree
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of uncertainty which has effects on total performance of a supply chain. The uncertainty

of the price of recovered products is affected by the purchasing and collection costs.

In the reverse side, we have considered the amount of returns and recoverable per-

centage of products as uncertain parameters. According to Pishvaee et al. [24], these

parameters are really uncertain parameters with high impact on the reverse planning

of a closed-loop supply chain. In fact, the amount of defective returned products is an

unknown and uncertain parameter.

4. Robust Counterpart Based on the Polyhedral Uncertainty Set

In this section, we pursuit the concepts of the set-induced robust optimization

method for the polyhedral uncertainty set based on the recent advances in the field

(see [2, 17, 25]).

In set-induced robust optimization, it is assumed that the uncertain parameters are

varied in a given uncertainty set and the model seeks for those solutions that immunize

the system for all potential realizations from uncertainty set. Indeed, the best solutions

obtained by the robust optimization should be feasible for all realizations of possible

values of uncertain parameters in the given uncertainty set. Unlike the box uncertainty

set (see Figure 2), which enforces the robust optimization model to find the worst-case

feasible solutions, assuming the polyhedral uncertainty set (see Figure 3) for uncertain

data leads to realistic feasible solutions with less degree of conservatism immunizing

the system for reasonable realizations of uncertain parameters. In fact, assuming the

polyhedral uncertainty set for uncertain parameters implies that all uncertain parameters

cannot get their worst-case values in the given set, simultaneously. But, the possible

values of uncertain parameters are varied within a polyhedral set.

Figure 2. Box uncertainty set. Figure 3: Polyhedral uncertainty.

It should be noted that the formulation of a robust counterpart model depends

upon the given uncertainty set assumed for uncertain parameters. Here, the robust

counterpart for the original model is formulated by assuming the polyhedral uncertainty

set for uncertain parameters.
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Consider the following well-known mathematical programming model with uncertain

parameters including cj , aij, and bi. Assume that the values of these parameters vary in

a bounded polyhedral uncertainty set, say U .

Max
∑

j

c̄jxj

S.t.
∑

j

āijxj ≤ b̄i, ∀ i, (4.1)

c, a, b ∈ UPolyhedral

The bar sign is used to show that the corresponding parameters are subject to uncer-

tainty. The parameters c̄j , āij, and b̄i can be written as follows:

c̄j = cj + ρjG
c
jξj, (4.2)

āij = aij + ρijG
a
ijξij, (4.3)

b̄i = ci + ρiG
b
iξi (4.4)

Where cj , aij, and bi are the nominal values of the corresponding uncertain parameters,

ρ, which is a positive number, represents the uncertainty level for the related uncertain

parameters, G indicates the uncertainty scale for the related uncertain parameters, and

ξ is a random variable. Note that if the variable ξ is bounded, the polyhedral uncer-

tainty set will be bounded. Hereafter, the indices of the above-mentioned parameters are

eliminated for simplicity. The uncertainty level expresses the perturbation percentage of

uncertain parameters around their nominal values. A particular case of interest is that

the uncertainty scale is assumed to be equal to the nominal values [25]. Under the given

polyhedral set, finding a robust solution for the problem (4.1) means that all constraints

remain feasible for all realizations of uncertain parameters varied within the given poly-

hedral set and its objective function value is not worse than the objective function values

under all realizations. It is noteworthy that for the sake of simplicity and clarity we have

applied some little changes on the formulation of robust model presented by Li et al.

[17].

4.1. Polyhedral uncertainty set The polyhedral uncertainty set is defined using the

1-norm of the uncertain data vector as follows,

U1 = {ξ | ‖ξ‖1 ≤ Γ} = {ξ |
∑

j∈Ji

|ξj | ≤ Γ}. (4.5)

Where Γ is an adjustable parameter that controls the size of uncertainty set. Ji represents

the index subset including the variable indices that their corresponding coefficients are

subject to uncertainty. Indeed, |Ji| indicates the number of variables whose corresponding

coefficients are subject to uncertainty in the ith constraint. Without loss of generality,

for bounding the polyhedral uncertainty set consider that ξj is varied in the range [−1, 1].

In this case, representing of uncertain parameters can be easily done by changing the

uncertainty level in the given bounded polyhedral set. In order to avoid covering the
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overall uncertain space the adjustable parameter should be less than or equal to the

cardinality of the uncertainty set in any constraint (i.e. Γ ≤ |Ji|).

4.2. The equivalent linear robust counterpart optimization model

In order to apply the uncertainty on the coefficients of the objective function, it

should be considered as a constraint. By replacing the equations (4.2)-(4.4) in the prob-

lem (4.1) we have:

Max
∑

j

(cj + ρjG
c
jξj)xj

S.t.
∑

j

(aij + ρijG
a
ijξij)xj ≤ bi + ρiG

b
iξi, ∀ i. (4.6)

Which can be rewritten as follows:

Max z

S.t.
∑

j

(cj + ρjG
c
jξj)xj ≥ z, ∀ i (4.7)

∑

j

(aij + ρijG
a
ijξij)xj ≤ bi + ρiG

b
iξi, ∀ i.

Or, equivalently,

Max z

S.t. −
∑

j

cjxj −
∑

j

ρjG
c
jξjxj ≤ −z, (4.8)

∑

j

aijxj +
∑

j

ρijG
a
ijξij)xj − ρiG

b
iξi ≤ bi, ∀ i.

In problem (4.8), the goal is to find solutions immunizing the feasibility of the model for

all possible values of ξ in the range [-1, 1] for the given polyhedral set. Therefore, in order

to enable problem (4.8) to find such robust solutions, it should be transformed to the

following problem, which is the robust counterpart of problem (4.1), for the polyhedral

uncertainty set.

Max z

S.t. −
∑

j

cjxj − max
ξ∈UPal.

{

∑

j

kρjG
c
jξjxj

}

≤ −z, (4.9)

∑

j

aijxj + max
ξ∈UPal.

{

∑

j

ρijG
a
ijξij)xj − ρiG

b
iξi

}

≤ bi, ∀ i.

The problem (4.9) is computationally intractable due to too many possible values of

uncertain parameters within the polyhedral set. Note that we dont know the behaviour of

uncertain parameters within the polyhedral set; however, we are aware that the uncertain
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parameters are varied within the bounded polyhedral uncertainty set. In other words, the

probability distribution or possibility distribution of uncertain parameters is not clear in

the bounded polyhedral set. Therefore, problem (4.9) is a computationally intractable

NP-hard problem. However, it could be transformed to the tractable convex and linear

programming model [17].

The equivalent non-linear form of problem (4.9) can be stated as follows:

Max z

S.t. z −
∑

j

cjxj + Γw ≤ 0

w ≥ ρjG
c
j |xj |, ∀ j,

(4.10)∑

j

aijxj + Γiwi ≤ bi, ∀ i,

wi ≥ ρijG
a
ij |xj |, ∀ j,

wi ≥ ρiG
b
i , ∀ i.

Note that the adjustable parameter shows the number of uncertain parameters in

the corresponding constraint. In addition, w is an auxiliary variable. The absolute form

in problem (4.10) imposes non-linearity to the model. Meanwhile, it could be easily

transformed to the linear form as follows:

Max z

S.t. z −
∑

j

cjxj + Γw ≤ 0

w ≥ ρjG
c
jyj , ∀ j,

∑

j

aijxj + Γiwi ≤ bi, ∀ i, (4.11)

wi ≥ ρijG
a
ijyj, ∀ j,

wi ≥ ρiG
b
i , ∀ i,

−yi ≤ xj ≤ yj, ∀ j,

It is worthy to note that if the variables (i.e. xj) are non-negative, the problem

(4.10) is solved without absolute forms to find robust solutions.

Another important point which is not stated by Li et al. [17] is developing the

equivalent robust counterpart for those constraints that are in equality form. Let’s

consider the following constraint that its parameters have been tainted with uncertainty:
∑

l

h̄elxl = k̄e, ∀ e. (4.12)
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The equivalent robust counterpart form for the constraint (4.12) can be stated as follows:

∑

l

helxl + Γewe ≥ ke, ∀ e,

∑

l

helxl − Γewe ≤ ke, ∀ e,

(4.13)
we ≥ ρelG

h
el|xj|,

we ≥ ρeG
k
e .

According to above descriptions and considering this fact that all variables of the problem

are non-negative, the equivalent robust counterpart optimization model for the proposed

integrated production-distribution planning model in closed-loop supply chains under

uncertainty of some input parameters in the form of polyhedral uncertainty set, can be

stated as follows:

Max z1 (4.14)

∑

t

1

(1+r)t

































































































[

∑

j

∑

k

∑

n

∑

p

Prjknptxjknpt−ΓPru0

+
∑

i

∑

k

∑

n

∑

p

Pr1iknptx1iknpt−ΓPr1u0

+
∑

j

∑

l

∑

p

∑

n

Pr2jlnptx2jlnpt−ΓPr2u0 +
∑

p

Pr3pty2pt−ΓPr3u0

]

[

∑

i

∑

j

∑

n

∑

p

Tcijnptx3ijnpt +
∑

i

∑

k

∑

n

∑

p

Tc1iknptx1iknpt

+
∑

j

∑

k

∑

n

∑

p

Tc2jknptx3jknpt +
∑

j

∑

l

∑

n

∑

p

Tc3ilnptx1ilnpt

+
∑

k

∑

m

∑

p

Tc4kmptykmpt +
∑

m

∑

i

∑

p

Tc6mipty3mipt

+
∑

i

∑

j

∑

n

∑

p

Tcijnptx4ijnpt +
∑

i

∑

p

Pciptxe1ipt

+
∑

i

∑

p

Rcipt

(

∑

m

y3mipt

)

+
∑

m

∑

p

Hpcmpt

(

∑

k

ykmpt+
∑

l

y1lmpt

)

+
∑

j

∑

p

HIc1jptIc1jpt +
∑

j

∑

p

HIc2jptIc2jpt

+
∑

k

∑

p

Pur1kpt

(

∑

m ykmpt

)

+ ΓPur1u0

+
∑

l

∑

p

Pur2lpt

(

∑

m y1lmpt

)

+ ΓPur2u0

+
∑

k

∑

p

Ha1kpt

(

∑

j

∑

n

xjknpt +
∑

i

∑

n

x1iknpt

)

+
∑

l

∑

p

Ha2lpt

(

∑

j

∑

n

x2jlnpt

)

+
∑

l

∑

p

sclptλlpt + Γscu0

]

































































































≥ Z1

(4.15)

ρPrG
Pr
jknptxjknpt ≤ u0, ∀ j, k, n, p, t (4.16)
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ρPr1G
Pr1
jknptx1jknpt ≤ u0, ∀ i, k, n, p, t (4.17)

ρPr2G
Pr2
jlnptx2jlnpt ≤ u0, ∀ j, l, n, p, t (4.18)

ρPr3G
Pr3
pt y2pt ≤ u0, ∀ p, t (4.19)

ρPur1G
Pur1
kpt

(

∑

m

ykmpt

)

≤ u0, ∀ k, p, t (4.20)

ρPur2G
Pur2
lpt

(

∑

m

y1lmpt

)

≤ u0, ∀ l, p, t (4.21)

ρscG
sc
lptλlpt ≤ u0, ∀ l, p, t (4.22)

∑

j

∑

n

xjknpt +
∑

i

∑

k

x1iknpt − Γ1kptρD1G
D1
kpt ≤ D1kpt, ∀ k, p, t (4.23)

∑

j

∑

n

xjknpt +
∑

i

∑

k

x1iknpt − Γ1kptρD1G
D1
kpt ≥ D1kpt, ∀ k, p, t (4.24)

∑

j

∑

n

x2jlnpt + λlpt − λlp,t−1 − Γ2lptρD2G
D2
lpt ≤ D2lpt, ∀ l, p, t (4.25)

∑

j

∑

n

x2jlnpt + λlpt − λlp,t−1 − Γ2lptρD2G
D2
lpt ≥ D2lpt, ∀ l, p, t (4.26)

∑

m

ykmpt − Γ4kptρRe1G
Re1
kpt ≤ Re1kpt, ∀ k, p, t (4.27)

∑

m

ykmpt + Γ4kptρRe1G
Re1
kpt ≥ Re1kpt, ∀ k, p, t (4.28)

∑

m

y1lmpt − Γ5lptρRe2G
Re2
lpt ≤ Re2lpt, ∀ l, p, t (4.29)

∑

m

y1lmpt + Γ5lptρRe2G
Re2
lpt ≥ Re2lpt, ∀ l, p, t (4.30)

Rppt ≥ β1p
∑

k

∑

m

ykmpt + β2p
∑

l

∑

m

y1lmpt − Γ6ptu1pt, ∀ p, t (4.31)

Rppt ≤ β1p
∑

k

∑

m

ykmpt + β2p
∑

l

∑

m

y1lmpt − Γ6ptu1pt, ∀ p, t (4.32)

y2pt ≥ (1− β1p)
∑

k

∑

m

ykmpt + (1− β2p)
∑

l

∑

m

y1lmpt − Γ6ptu1pt, ∀ p, t (4.33)

y2pt ≤ (1− β1p)
∑

k

∑

m

ykmpt + (1− β2p)
∑

l

∑

m

y1lmpt + Γ6ptu1pt, ∀ p, t (4.34)

ρβ1G
β1
p

∑

k

∑

m

ykmpt ≤ u1pt, ∀ p, t (4.35)

ρβ2G
β2
p

∑

l

∑

m

ylmpt ≤ u1pt, ∀ p, t (4.36)

Constraints (3.3), (3.4), (3.5), (3.7), and (3.12)-(3.22).
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Table 2: Random generation of nominal data.

parameter value parameter value

D1kpt ∼Unif (250, 400) units Hic1jtp ∼Unif (30, 40)$

D2ltp ∼Unif (130, 200) units Hic2jtp ∼Unif (15, 25)$

D3pt ∼Unif (50, 200) units pcipt ∼Unif (500, 600)$

Re1kpt ∼Unif (60,140) units Rcipt ∼Unif (140, 200)$

Re2ltp ∼Unif (80,170) units Hpcmpt ∼Unif (40, 80)$

SSjtp ∼Unif (60,100) units Tcijnpt, Tc2jknpt, ∼Unif (15, 25)$

Pr1iknpt, Prjknpt ∼Unif (1000, 1300)$ Tc4kmpt, Tc5lmpt ,∼Unif (10, 20)$

Pr2jlnpt ∼Unif (690, 900)$ Tc3jlnpt, Tc6mipt ∼Unif (10, 20)$

Prpt ∼Unif (450, 600)$ Tc1iknpt ∼Unif (20, 30)$

BCt ∼Unif (700000, 750000)$ Tdikn ∼Unif (4, 8) days

Pur1kpt ∼Unif (200, 290)$ Td1jkn ∼Unif (6, 10) days

Pur2ltp ∼Unif (130,190)$ Te1lp ∼Unif (15, 20) days

Ha1kpt ∼Unif (20, 30)$ Td2jln ∼Unif (6, 18) days

Ha2ltp ∼Unif (15, 20)$ Tekp ∼Unif (6, 10) days

Scltp ∼Unif (60,80)$ β1p, β2p ∼Unif (0.65, 0.85)

slk ∼Unif (0.8, 0.9) Ca1i ∼Unif (10000,15000) units

sl1l ∼Unif (0.7, 0.8) Ca2j ∼Unif (3500,6000) units

bp, b1p, b2p ∼Rand{1, 2} Ca3m ∼Unif (4500,6000) units

ρpr, ρpr1, ρpr2, ρpr3,
∼Unif (0.01, 0.06)

ρD1, ρD2, ρD3, ρRe1,
∼Unif (0.09, 0.12)

ρpur1, ρpur2, ρsc ρRe2, ρβ1, ρβ2

5. Computational Experiments

In this section, a numerical example with reasonable size is presented to investi-

gate the applicability and appropriateness of the proposed robust framework for the

IPDPCLSC model. The proposed robust approach was coded in Lingo 11.0 optimization

software and solved on a Pentium dual-core 2.60 GHZ computer with 4 GB RAM. It is

worthy to note that the conservatism degree of polyhedral robust optimization method

depends on the choice of adjustable parameter (i.e., Γ), controlling the size of uncertainty

set, and desired uncertainty level (i.e., ρ) for each uncertain parameter. The adjustable

parameter controls the uncertainty space covered by the polyhedral uncertainty set, while

the uncertainty level controls the range of uncertain parameters changes. As mentioned

in the previous section, when the adjustable parameter is set to be equal or larger than

the number of uncertain parameters in any constraint (i.e., Γ ≥ |Ji|), the overall un-

certainty space is covered by the polyhedral set. In particular case, if Γ = |Ji|, the

intersection between the polyhedral and box uncertainty set is exactly the box [17]. It is
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worthy to note that the box uncertainty set is assumed for uncertain parameters when

the decision maker prefers to achieve over-conservative robust solutions for the worst-case

conditions. Meanwhile, the realistic robust solutions can be obtained when Γ < |Ji|.

The size of the considered numerical example for the problem in question is as fol-

lows: 4 HMR centres, 8 HDR centres, 3 collection centres, 3 transportation modes, 3

types of products, 3 periods, 20 customer zones for new products, and 15 customer zones

for recovered products. The nominal values of the input parameters, which are actually

the most likely values, are randomly generated according to Table 2. Table 3 illustrates

the cardinality of uncertainty set for the uncertain parameters of the concerned problem.

These values are achieved by multiplying the corresponding indices of the uncertain pa-

rameters existing in any equation (for example for Prjknpt, |Ji| = 8×20×3×3×3 = 4320).

Since the objective function is considered as a constraint in robust counterpart optimiza-

tion model (See previous section), all indices of uncertain parameters are multiplied

together to achieve the cardinality of uncertainty set. In addition, since the constraints

are separately considered for each set of indices, the cardinality of uncertainty set is equal

to 1. Indeed, the cardinality of uncertainty set is calculated for any constraint based on

the number of uncertain parameters involved in.

Table 3: Cardinality of uncertainty set (|Ji|).

Cardinality of

uncertainty set

Uncertain parameters of Objective function
Uncertain parameters

of Constraints

Prjknpt Pr1iknpt Pr2jlnpt Pr3pt Pur1kpt Pur2lpt Sclpt
D1kpt, D2lpt, Re1kpt,

Re2lpt, β1p, β2p

|Ji| 4320 2160 3240 9 180 135 135 1

We have specified 11 different scenarios for adjustable uncertainty parameter to eval-

uate the efficiency and effectiveness of the proposed robust optimization model for the

IPDPCLSC under uncertainty. Table 4 shows the defined scenarios. In fact, the cardinal-

ities of uncertainty set for different parameters, specified in Table 3, are divided into 10

equal parts. Obviously, when the cardinalities of uncertainty are set to 0, they describe

deterministic condition and when they are set to the number of uncertain parameters

in any equation, the worst-case condition for realization of uncertain parameters is en-

visioned. We mean the scenario 6 as a representative of realistic condition. Clearly, the

degree of conservatism of the scenarios is increased shifting from scenario 1 to scenario11.

Notably, since the problem is linear, all run times of different problems are less than 2

minutes.

Objective function values and different types of revenues for different specified sce-

narios have been demonstrated in Table 5. From this Table, the objective function values

and revenues, resulted from selling of products being new, recovered and non-recovered,

are decreased as long as the degree of conservatism of the scenarios are increased. Indeed,

the lost profit is based on the robustness of the scenarios. In addition, reduction gra-

dient of objective function values is larger than revenues. As shown in Table 6, among
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Table 4: Specifying different scenarios.

Scenario
Cardinality of uncertainty set for uncertain parameters (|Ji|)

Prjknpt Pr1iknpt Pr2jlnpt Pr3pt Pur1kpt Pur2lpt Sclpt
D1kpt, D2lpt, Re1kpt,

Re2lpt, β1p, β2p

1
0 0 0 0 0 0 0 0

(Deterministic)

2 432 216 324 0.9 18 13.5 13.5 0.1

3 864 432 648 1.8 36 27 27 0.2

4 1296 648 972 2.7 54 40.5 40.5 0.3

5 1728 864 1296 3.6 72 54 54 0.4

6 (Realistic) 2160 1080 1620 4.5 90 67.5 67.5 0.5

7 2592 1296 1944 5.4 108 81 81 0.6

8 3024 1512 2268 6.3 126 94.5 94.5 0.7

9 3456 1728 2592 7.2 144 108 108 0.8

10 3888 1944 2916 8.1 162 121.5 121.5 0.9

11
4320 2160 3240 9 180 135 135 1

(Worst-case)

the share of different costs in the objective function, transportation costs, production

costs, advertising costs, and shortage costs are increased when the degree of robustness

of scenarios are intensified. However, quality testing costs and inventory holding costs for

recovered products are decreased and inventory holding costs for new products remain

fixed for all specified scenarios. Recovering costs has a reduction in scenario 2 and then

is increased. But, purchasing costs has an increase in scenario 2 and then is decreased.

Although the more used products are purchased in scenario 2, the recovery costs are less

than those in scenario 1. This observation could be explained owing to uncertainty of

percentage of recoverable returned products. Consequently, the pure profit is decreased

as long as the robustness of the model is increased. Meanwhile, the behaviour of different

components in objective function may be different when compared with each other under

different scenarios.

Description of abbreviations used in Tables 5 and 6 are as follows: O.F.V. (Ob-

jective function value), RV1 (Revenue resulted from selling new products via indirect

shipment), RV2 (Revenue resulted from selling new products via direct shipment), RV3

(Revenue resulted from selling recovered products), RV4 (Revenue resulted from sell-

ing non-recoverable products), Tr. Costs (Transportation costs), Pr. Costs (Production

costs), Re. costs (Recovering costs), NIn costs (Holding costs of new products), RIn.

costs (Holding costs of recovered products), Pu. costs (Purchasing costs of used prod-

ucts), Ad. costs (Advertisement costs), Sh. costs (shortage costs).

Increasing costs in Table 6 is due to robustness price paid to deal with the uncer-

tainty. The zero values for inventory holding costs for recovered products illustrate that
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Table 5: The objective function values and share of different revenues.

Scenarios O.F.V. RV1 RV2 RV3 RV4

Sc. 1 43470110 44629220 19066370 19670200 4624728

Sc. 2 37839840 44913400 17465860 19208410 835533

Sc. 3 36765440 44401250 17655340 19014550 671270

Sc. 4 35776070 44161060 17562520 18745360 663701

Sc. 5 34814890 44096800 17313200 18485200 656158

Sc. 6 33881320 44122980 16987910 18232420 648641

Sc. 7 32975570 44166590 16666560 17991230 641151

Sc. 8 32097640 44220190 16350960 17758210 633687

Sc. 9 31247690 44279410 16046500 17533870 626249

Sc. 10 30425040 44352130 15745550 17319210 618837

Sc. 11 29629330 44441820 15446190 17114520 611452

Table 6: The share of different costs in the objective function.

Scenarios Tr. Costs Pr. Costs Re. Costs Te. Costs NIn. costs RIn. costs Pu. costs Ad. costs Sh. costs

Sc. 1 3137340 27899640 3178786 1562775 188841 77745 6795373 1659455 20453

Sc. 2 3119948 28336400 2884123 1550629 188841 0 6798913 1677863 26641

Sc. 3 3145349 28669510 2918352 1537304 188841 0 6778224 1696496 42898

Sc. 4 3171027 28973150 2952421 1523979 188841 0 6768274 1715129 63758

Sc. 5 3199584 29277630 2984364 1510655 188841 0 6757406 1733761 84224

Sc. 6 3222198 29578990 3020960 1497330 188841 0 6745621 1752394 104297

Sc. 7 3250541 29882960 3055683 1484005 188841 0 6732919 1771027 123977

Sc. 8 3278373 30185960 3089336 1470680 188841 0 6719299 1789659 143264

Sc. 9 3308328 30487750 3120852 1457356 188841 0 6704762 1808292 162158

Sc. 10 3332296 30791400 3157226 1444031 188841 0 6689307 1826925 180659

Sc. 11 3359867 31096380 3191591 1430706 188841 0 6672935 1845558 198766

demands of recovered products are faced with shortage when the uncertainty of scenarios

is increased. The amounts of shortage costs confirm this claim. Fixed inventory holding

costs for all scenarios imply that the all demands of new products are satisfied by existing

capacity of facilities and inventory holding costs are charged because of holding safety

stocks.

The amount of new products, recovered products, amount of non-recovered products

sold to material customers, and inventory of new and recovered products under deter-

ministic condition (Sc. 1), realistic condition (Sc. 6), and worst-case condition (Sc. 11)
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have been summarized in Table 7. Since the shortage is not possible for new product
demands, the amount of new products in the forward side of the closed-loop supply chain
is increased when the scenarios moves toward robust ones. Meanwhile, in view of the fact
that some demand of customers for recovered products can be unfulfilled, the amount
of recovered products in the reverse side is determined according to a trade-off between
shortage costs and revenues in the objective function. The amount of non-recovered
products strictly depends on the percentage of recoverable products and related uncer-
tainty. As shown in Table 7, the amount of non-recovered products is strictly decreased
by increasing the uncertainty level. The amount of inventories for new product is the
same for all scenarios because of holding safety stocks in HDR centres. The impact of
uncertainty on the amount products and inventory in the forward and reverse sides can
be seen in Table 7.

Table 7: Amount of new and recovered products produced and recovered in all facilities.

Scenario
Product

Period New Recovered Nonrecovered
Inventory Inventory

type (new) (recovered)

Sc. 1

1

1 6728 3131 900 611 351

2 5839 3016 863 613 1181

3 5553 2845 823 606 1643

2

1 6977 2971 1071 651 0

2 6031 2901 1047 644 454

3 5791 2833 1022 685 860

3

1 7083 2579 1205 654 0

2 6106 2641 1231 627 34

3 5879 2671 1248 663 226

Sc. 6

1

1 7064 2946 146 611 0

2 6160 2318 151 613 0

3 5858 2525 156 606 0

2

1 7324 3148 140 651 0

2 6363 2594 165 644 0

3 6107 2573 152 685 0

3

1 7436 3075 135 654 0

2 6443 2423 157 627 0

3 6200 2627 140 663 0

Sc. 11

1

1 7400 3113 139 611 0

2 6481 2449 144 613 0

3 6164 2668 149 606 0

2

1 7672 3326 133 651 0

2 6695 2741 157 644 0

3 6423 2719 145 685 0

3

1 7790 3249 128 654 0

2 6780 2560 149 627 0

3 6521 2776 133 663 0

Consequently, the outcomes illustrated above form some guidelines and frameworks
for other planning modules in short-term such as master production schedule, capacity
requirements planning and material requirements planning.
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5.1. Sensitivity analysis

In this section, we conduct some sensitivity analyses on the uncertainty levels of

uncertain parameters to investigate the performance of the proposed IPDPCLSC model.

The sensitivity analyses are performed for the scenarios 2, 6, and 11. Since scenario

1 (deterministic condition) is insensitive respect to uncertainty level changes, we select

scenario 2, having the lowest degree of conservatism among all scenarios, instead of

scenario 1 to perform sensitivity analysis. To do so, the randomly selected nominal

data are used in the numerical example and then the uncertainty level for any uncertain

parameter is increased step by step from 0.01 to 0.1. Figure 4 shows the changes of

objective function values (OFVs) in respect to uncertainty levels of selling prices of new

products which are shipped indirectly.
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Figure 4: OFV vs. uncertainty level of Pr.

The increase in uncertainty level of selling prices of new products decreases the

total profit of three scenarios. However, that of scenario 11, representing the worst-case

condition, decreases with a steeper gradient compared to the scenarios 2 and 6. This

observation could be explained due to higher degree of robustness of scenario 11 than

others.

As illustrated in Figure 5, the total profit is decreased when the uncertainty level of

selling prices of new products which are directly shipped to customer zones is increased.

Meanwhile, the gradient of reduction is intensified after uncertainty level of 0.03 for

scenarios 6 and 11.

Consequently, the results of conducted sensitivity analyses state that the proposed

IPDPCLSC model is much sensitive to changes of uncertainty levels of selling prices of

new products which are directly or indirectly sold and purchasing costs of used products.

Therefore, in order to obtain the optimal aggregate production and distribution planning

for the closed-loop supply chain, the uncertainty levels of these parameters should be

determined, precisely. In all sensitivity analyses, the total profit related to considered

scenarios are so compatible with the degree of robustness of scenarios so that those

scenarios with higher degree of robustness have lower profit than others.
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Figure 5: OFV vs. uncertainty level of Pr1.

At the following, we perform some other sensitivity analyses on the amounts of

demands of new and recovered products for the deterministic, realistic, and worst-case

conditions (i.e., Scenarios 1, 6, and 11). As it is demonstrated in Figure 6, the objective

function values are increased in a linear form as long as the mean of new products is

increased. This exhibits the direct effect of the new products’ demand on the performance

of the proposed IPDPCLSC model.
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Figure 6: OFV vs. the mean of new products.

Sensitivity analysis on the demand of recovered products (See Figure 7) illustrates

that total profit is increased for scenarios 6 and 11 along with increasing the mean amount

of recovered products. Meanwhile, total profit for the deterministic model is increased

until certain amount of recovered products (i.e., 190) and then is decreased. Another

point inferred from figure 7 is reduction of profit gradient after an amount of 280 for

recovered products. Therefore, it may be estimated that the scenarios 6 and 11 behave

similar to deterministic model for high values of demand of recovered products.

As shown in Figures 8 and 9, increasing the amount of returns from both of customers

decreases the total profit for scenarios 6 and 11. However, this procedure is not followed

by the deterministic model.
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Figure 7: OFV vs. the mean of recovered products.
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Figure 8: OFV vs. the mean of returned products from new products customers.
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Figure 9: OFV vs. the mean of returned products from recovered products.
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6. Concluding Remarks

This paper presents a novel robust optimization model based on polyhedral uncer-

tainty set for integrated production and distribution planning in multi-echelon, multi-

products closed-loop supply chains over a mid-term multi-periods horizon. The proposed

model is able to consider different transportation modes, direct or indirect shipments,

and several customer zones for different products beside the traditional features consid-

ered for tackling such problems in the literature. Computational results were provided

by using a numerical example and its related scenarios to discuss different features of the

proposed robust optimization model to handle the uncertainty of parameters. According

to the achieved results, using robust optimization method would assure the feasibility of

the model under uncertainty. Also, the DM could select the best approach through the

provided sensitivity analysis. In our view, the realistic approach (scenario 6) will provide

suitable solutions with reasonable costs of handling uncertainty.

It should be noted that when there is not reliable and historical data for making

probability distribution of uncertain parameters, we cannot use stochastic programming

methods. In this case, robust optimization method based on different uncertainty sets

could be efficiently used. Since many real world problems usually have the limitation

of data availability, the robust optimization method is a suitable tool to deal with the

uncertainty of such problems.

Some managerial implications, which are inferred from our experiments and could

be applied in real world cases, are as follows:

• The proposed model is able to provide robust medium-term aggregate plans in closed-

loop supply chains involving different types of customers. The need for such a model

may be observed in high-tech electronics, copiers and printers industries.

• Although the polyhedral uncertainty set is used to model the uncertainty of param-

eters in a realistic viewpoint, the amount of adjustable parameter that controls the

size of uncertainty has a direct impact on the conservatism level of the model so

that for its large values the polyhedral set leads to worst-case solutions. Therefore,

this parameter should be determined according to managerial preferences. Specify-

ing different scenarios, illustrated in previous Section, can help senior management

to select the most suitable scenario for adjustable parameter Γ.

• Another important parameter affecting the performance of the robust model is the

uncertainty level of each uncertain parameter and therefore should be determined

according to decision maker preferences and some historical data.

• Unlike the deterministic model, the proposed robust model assures feasibility of the

model for any realization of uncertain parameters varying within the polyhedral

uncertainty set.

• Although the proposed model is suitable for planning in a centralized closed-loop

supply chain, it could be applied for planning in decentralized ones through applying

the conceptual framework proposed in [34].
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The following research directions could be covered by researchers and practitioners

in the future. Considering another objective for example maximization of responsiveness

or minimization of environmental issues in the context of multi-objective programming

could be addressed. The proposed model has a general structure which could be imple-

mented in real cases of industries with required modifications. The problem could be

studied under assumption of box uncertainty sets for uncertain parameters and evaluated

its performance with the proposed model. Also, developing a heuristic or metaheuris-

tic algorithms to solve the proposed IPDPCLSC model for large and real cases is an

interesting future research. The proposed model could be decomposed into production

and distribution problems and solved with Benders decomposition algorithm for very

large sizes. By this way, global optimum solutions are achieved in reasonable time. An-

other interesting future research is evaluating the performance of the proposed model

with possibilistic programming approaches through applying the models in real case

production-distribution problems.
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