項目 | 資料 |
卷期Vol. & No. | 第1卷第1期 Vol 1 No. 1 |
標題Title | 參與式預算制度對預算寬列傾向影響之實證研究-以任務不確定性及偵測預算寬列能力為調節變數The Effect of Participative Budgeting System on the Propensity of Budgetary Slack - Task Uncertainty and Slack Detection as Moderating Variables |
作者Authors | 倪豐裕、邱炳乾Feng-Yu Ni Bing-Chyan Chiou |
出版日期Publish Date | 2000-11-30 |
摘要Abstract | 本研究的目的在探討預算參與與預算寬列傾向的關係,並且以任務不確定性及上司偵 測預算寬列能力為情境變數,以解釋過去行為會計對上述關係在實證研究上不一致現象。針 對實行預算參與制度的28家上市公司的經理人進行問券調查,並進行多元迴歸分析。研究結 果發現預算參與和任務不確定性對預算寬列傾向有顯著的交互作用效果存在。亦即,當任務 不確定性高(低)時,預算參與將可減少(增加)預算寬列傾向。並且,本研究進一步發現 上述交互作用效果受到偵測預算寬列能力的影響。換言之,預算參與、任務不確定與偵測預 算寬列能力對預算寬列存在顯著的三維交互作用效果;高偵測預算寬列能力可強化預算參與 在任務不確定下的實質正面效果而降低預算寬列。此研究結果有助於調和過去實證研究的不 一致,並且作為企業在實施預算參與制度的參考。This study wanted to investigate the relationship between participative budgeting system and budgetary slack. In order to explain the inconsistent empirical results in the previous behavior accounting, this study explore how this relationship affected by the task uncertainty and the budgetary slack detection. We invested 140 middle managers in 28 owner firms, which implement participative budgetary system. Through the regression analysis, we found that there is interaction effect between budgetary participation and task uncertainty on budgetary slack, and the direction also meet the expectation of hypothesis. That is, when task uncertainty is high (low), budgetary participation will decrease (increase) the propensity of budgetary slack. Further, we also found the significant three ways interaction effect including slack detection on budgetary slack. By this result, we could reconcile the inconsistency existing previous behavior accounting researches and provide some practical suggestion |
關鍵字KeyWords | 預算參與、任務不確定性、預算寬列、偵測預算寬列能力、交互作用效果Budgetary Participation, Task Uncertainty, Budgetary Slack, Slack Detection, Interaction |
DOI(全文下載Download) | 10.6675/JCA.2000.1.1.03 |
相關文章Related Articles | 預算參與前置因子、功能性認知與管理績效的結構關係探討:巢式分析(The Structural Relationship between the Antecedents, Cognitive function of Budgetary Participation and Management Performance: Nested Model) |